| TEAMS | TEAM LEADERS | E-mail | | | | |---|---|---|--------------------------------------|--|--| | MAD | Aude Simon, Mathias
Rapacioli | aude.simon@irsamc.ups-tlse.fr | mathias.rapacioli@irsamc.ups-tlse.fr | | | | PHOTOTEC | Martial Boggio-Pasqua | martial.boggio@irsamc.ups-tlse.fr | | | | | SEM | Nicolas Suaud | suaud@irsamc.ups-tlse.fr | | | | | THEO | Arjan Berger | arjan.berger@irsamc.ups-tlse.fr | | | | | | METHODOLODOGY | | | | | | Topic | Method | People | Lab (group) | | | | | | Aude Simon, Mathias Rapacioli, Martial Boggio-
Pasqua, Nicolas Suaud, Arian Berger | | | | | Methodology
for strongly
correlated
systems,
including
relativistic
effects | Model Hamiltonians for extended systems. Collective effects | | | | | | | Improvement of relativistic effects treatments for ZFS tensor and magneto-electric coupling | | | | | | | Periodic DFT, Green's Function, DMFT | | LCPQ (SEM, THEO) | | | | | (SC)2 dressings of IC, MRCC or perturbative methods | | | | | | | Improvement of DFT descriptions for highly correlated systems (Spin decontamination, spin polarization) | | | | | | Approximate
DFT, periodic
and non-
periodic, large
and extended
systems | DFTB | | LCPQ (MAD) | | |--|---|---------|------------------|-------------| | Periodic
systems | WFT, DFT, QMC, MBPT,
Clifford Boudary Conditions for
the ab initio treatment of periodic
systems, Model Hamiltonians | | LCPQ (SEM, THEO) | | | Excited-state properties | Selected CI (CIPSI), coupled cluster, DFT (TDDFT, ensemble DFT), MBPT (GW, BSE) | | | | | APPLICATIONS | | | | | | | | | | | | Systems | Property | Methods | People | Lab (group) | | Conjugated
hydrocarbon
systems, PAH,
astrochemical
applications | Geometry, Spectroscopy,
Magnetism, Aromaticity,
Bistability, Dynamics,
Photophysics, Reactivity | WFT, DFT, SF-DFT, TD-DFT, DFTB, CC / Model
Hamiltonians | LCPQ (MAD, SEM,
THEO, PHOTOTEC) | |---|--|--|------------------------------------| | Clusters (metal,
noble gaz,
covalent,
molecular,
astrophysically
relevant),
Condensed
phase (water,
gas hydrates) | Geometry, spectroscopy, dynamics, reactivity, fragmentation, collision | WFT, CC, DFTB, QM/MM, Molecular Dynamics | LCPQ (MAD, THEO) | | Organic
molecules | Soil interactions; pesticides Optical and redox properties, photochromism, photoreactivity, Magnetism | WFT, DFT, TD-DFT, SD-DFT, Molecular
Dynamics, DFTB | LCPQ (MAD,
PHOTOTEC, SEM) | | Wigner crystal | Electronic properties | WFT, ad hoc codes | LCPQ (THEO) | | Diatomic
molecules
containing ionic
states.
Astrophysics. | Spectral profile,
diabatization,metastable states,
vibronic effects | WFT, DVR | LCPQ (THEO) | |---|---|---------------------------|-------------| | Particles, nuclei,
atoms and small
molecules | Parity non-conservation, symmetry
violation beyond the Standard
Model | General many-body methods | LCPQ (THEO) |